37985 measured reflections

 $R_{\rm int} = 0.025$

5373 independent reflections

4684 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,1,4,4-Tetrabenzyl-1,4-diphosphinane-1.4-dijum dibromide deuterochloroform disolvate

Manfred Fild,^a* Oana N. Krüger,^a Ioan Silaghi-Dumitrescu^b and Carsten Thöne^a

^aInstitut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ^bDepartment of Chemistry, Babes-Bolyai University, Kogalniceanu Street 1, 400084 Cluj Napoca, Romania

Correspondence e-mail: m.fild@tu-bs.de

Received 15 October 2007; accepted 24 October 2007

Key indicators: single-crystal X-ray study; T = 133 K; mean σ (C–C) = 0.003 Å; R factor = 0.032; wR factor = 0.083; data-to-parameter ratio = 26.9.

In the title compound, $C_{32}H_{36}P_2^{2+}\cdot 2Br^{-}\cdot 2CDCl_3$, the diphosphonium ring of the centrosymmetric dication adopts a chair conformation. A network of weak C-H···Cl and C-H...Br interactions helps to establish the packing. Both bromide ions lie on crystallographic twofold rotation axes.

Related literature

For related literature, see: Brown & Trefonas (1972): Duraczynska & Nelson (2005); Hinton & Mann (1959); Matt et al. (1996).

Experimental

Crystal data $C_{32}H_{36}P_2^{2+}\cdot 2Br^{-}\cdot 2CDCl_3$ $M_r = 883.08$ Monoclinic, C2/c a = 16.2692 (10) Åb = 17.5649 (10) Å c = 13.9110 (8) Å $\beta = 112.350(3)^{\circ}$

V = 3676.7 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 2.75 \text{ mm}^{-1}$ T = 133 (2) K $0.38 \times 0.30 \times 0.29 \; \text{mm}$

Data collection

Bruker SMART1000 CCD

```
diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 1999)
  T_{\min} = 0.360, \ T_{\max} = 0.502
  (expected range = 0.323 - 0.450)
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.032$	200 parameters
$wR(F^2) = 0.083$	H-atom parameters constrained
S = 1.05	$\Delta \rho_{\rm max} = 1.52 \text{ e } \text{\AA}^{-3}$
5373 reflections	$\Delta \rho_{\rm min} = -1.05 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots Cl3^{ii}$	0.99	2.93	3.8486 (19)	155
C14-H14···Cl1 ⁱⁱⁱ	0.95	2.87	3.686 (2)	145
C13−H13···Br1 ^{iv}	0.95	2.99	3.773 (2)	141
$C2-H2B\cdots Br1^{v}$	0.99	2.79	3.7553 (18)	166
$C4 - H4B \cdots Br1^v$	0.99	2.75	3.6757 (18)	157
$C1 - H1A \cdots Br1^{vi}$	0.99	2.86	3.7443 (19)	149

Symmetry codes: (ii) $x + \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iii) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z$; (iv) $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1;$ (v) -x, -y, -z + 1; (vi) x, y, z - 1.

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB2582).

References

- Brown, J. N. & Trefonas, L. M. (1972). J. Heterocycl. Chem. 9, 35-40.
- Bruker (1999). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Duraczynska, D. & Nelson, J. H. (2005). Dalton Trans. pp. 92-103.
- Hinton, R. C. & Mann, F. G. (1959). J. Chem. Soc. pp. 2835-2843.
- Matt, D., Ziessel, R., de Cian, A. & Fischer, J. (1996). New J. Chem. 20, 1257-1263.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XP. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

supplementary materials

Acta Cryst. (2007). E63, o4525 [doi:10.1107/81600536807052932]

1,1,4,4-Tetrabenzyl-1,4-diphosphinane-1,4-diium dibromide deuterochloroform disolvate

M. Fild, O. N. Krüger, I. Silaghi-Dumitrescu and C. Thöne

Comment

Similar to the homologue structures known in the literature (Brown & Trefonas, 1972; Matt *et al.*, 1996; Duraczynska & Nelson, 2005) the diphosphonium ring, in the title compound, (I), which sits on a crystallographic center of symmetry, is in a chair conformation with the torsion angles of 52.58 (17)° ($C4^{i}$ —P—C3—C4) and –56.00 (16)° (P—C3—C4—Pⁱ) (i: –*x*,-*y*,-*z*). Each phosphorus atom has two benzyl groups attached, one of which is equatorial and the other axial. The mean P—C bond distance in (I) of 1.80 (18)Å is in accordance with the reported data for other cyclic diphosphonium salts. The P atom in (I) displays a slightly distorted tetrahedral geometry with C—P—C angles ranging from 106.61 (8)° to 113.65 (8)°. The C2—P1—C1 angle is intermediate between that of phenyl (Brown & Trefonas, 1972; Matt *et al.*, 1996) and cyclohexyl substituted derivatives (Duraczynska & Nelson, 2005). The phenyl rings are tilted to each other with an angle of 47.42 (10)°.

Unlike the phenyl analog (Matt *et al.*, 1996), the packing for (I) is consolidated by weak C—H···Cl and C—H···Br interactions (Table 1), linking the dication, the anions, and the deuterated solvent molecule.

Experimental

The title compound was been prepared from the corresponding diphosphine, (PhCH₂)₂PCH₂CH₂P(CH₂Ph)₂, and 1,2-dibromoethane according to the procedure given by Hinton & Mann (1959). Colourless blocks of (I) were obtained from deuterated chloroform by slow evaporation at room temperature.

Figures

Fig. 1. The molecular structure of the dication in (I), with displacement ellipsoids for the nonhydrogen atoms drawn at the 50% probability level. The unlabelled atoms are generated by the symmetry operation (-x, -y, -z).

Fig. 2. A packing diagram for (I), viewed along the a axis with the H bonds indicated by dashed lines.

1,1,4,4-Tetrabenzyl-1,4-diphosphinane-1,4-diium dibromide deuterochloroform disolvate

Crystal data

 $C_{32}H_{36}P_2^{2+}\cdot 2Br^{-}\cdot 2CDCl_3$ $M_r = 883.08$ $F_{000} = 1776$ $D_x = 1.595 \text{ Mg m}^{-3}$ Monoclinic, *C*2/*c* Hall symbol: -C 2yc a = 16.2692 (10) Åb = 17.5649 (10) Åc = 13.9110 (8) Å $\beta = 112.350 (3)^{\circ}$ $V = 3676.7 (4) \text{ Å}^{3}$ Z = 4

Data collection

Bruker SMART1000 CCD diffractometer	5373 independent reflections
Radiation source: fine-focus sealed tube	4684 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
Detector resolution: 8.192 pixels mm ⁻¹	$\theta_{max} = 30.0^{\circ}$
T = 133(2) K	$\theta_{\min} = 1.8^{\circ}$
ω scans	$h = -22 \rightarrow 22$
Absorption correction: multi-scan (SADABS; Bruker, 1999)	$k = -24 \rightarrow 24$
$T_{\min} = 0.360, \ T_{\max} = 0.502$	$l = -19 \rightarrow 19$
37985 measured reflections	

Mo Kα radiation

Cell parameters from 8675 reflections

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.3 - 30.4^{\circ}$

 $\mu = 2.75 \text{ mm}^{-1}$

T = 133 (2) K

Block, colourless

 $0.38 \times 0.30 \times 0.29 \text{ mm}$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.083$	$w = 1/[\sigma^2(F_o^2) + (0.0419P)^2 + 6.1465P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.05	$(\Delta/\sigma)_{max} < 0.001$
5373 reflections	$\Delta \rho_{max} = 1.52 \text{ e } \text{\AA}^{-3}$
200 parameters	$\Delta \rho_{min} = -1.05 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	Extinction correction: none

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculat-

ing *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

	x	У	Z	$U_{\rm iso}*/U_{\rm eq}$
Br1	0.0000	0.121056 (14)	0.7500	0.02374 (7)
Br2	0.0000	0.209800 (15)	0.2500	0.03136 (8)
P1	0.08262 (3)	0.06365 (2)	0.06148 (3)	0.01914 (9)
C1	0.12293 (12)	0.15385 (10)	0.03500 (15)	0.0246 (3)
H1A	0.0881	0.1678	-0.0382	0.030*
H1B	0.1117	0.1932	0.0795	0.030*
C11	0.22023 (12)	0.15556 (10)	0.05260 (14)	0.0238 (3)
C12	0.27929 (14)	0.19798 (11)	0.13390 (16)	0.0291 (4)
H12	0.2580	0.2269	0.1773	0.035*
C13	0.36960 (15)	0.19821 (13)	0.15203 (19)	0.0380 (5)
H13	0.4098	0.2274	0.2076	0.046*
C14	0.40056 (16)	0.15622 (14)	0.0894 (2)	0.0421 (5)
H14	0.4624	0.1551	0.1032	0.050*
C15	0.34194 (17)	0.11551 (13)	0.0062 (2)	0.0401 (5)
H15	0.3633	0.0875	-0.0379	0.048*
C16	0.25188 (15)	0.11585 (12)	-0.01245 (17)	0.0316 (4)
H16	0.2116	0.0887	-0.0702	0.038*
C2	0.13706 (12)	0.03240 (10)	0.19539 (14)	0.0223 (3)
H2A	0.1500	0.0777	0.2411	0.027*
H2B	0.0952	-0.0001	0.2132	0.027*
C21	0.22303 (11)	-0.01158 (10)	0.21883 (13)	0.0217 (3)
C22	0.30491 (13)	0.02553 (12)	0.25009 (15)	0.0279 (4)
H22	0.3076	0.0793	0.2580	0.033*
C23	0.38249 (13)	-0.01563 (13)	0.26965 (17)	0.0331 (4)
H23	0.4379	0.0101	0.2912	0.040*
C24	0.37956 (13)	-0.09415 (13)	0.25799 (16)	0.0323 (4)
H24	0.4327	-0.1220	0.2704	0.039*
C25	0.29897 (14)	-0.13164 (12)	0.22824 (16)	0.0293 (4)
H25	0.2968	-0.1854	0.2204	0.035*
C26	0.22100 (12)	-0.09085 (11)	0.20968 (14)	0.0247 (3)
H26	0.1660	-0.1171	0.1907	0.030*
C3	-0.03415 (11)	0.07968 (10)	0.03025 (14)	0.0222 (3)
H3A	-0.0403	0.1155	0.0821	0.027*
H3B	-0.0593	0.1050	-0.0384	0.027*
C4	-0.09037 (11)	0.00863 (10)	0.02692 (14)	0.0214 (3)
H4A	-0.1533	0.0240	0.0059	0.026*
H4B	-0.0708	-0.0133	0.0977	0.026*
Cl1	-0.10604 (4)	0.26705 (3)	-0.07399 (5)	0.03723 (12)
Cl2	-0.09062 (6)	0.41535 (4)	0.01860 (5)	0.05499 (18)
Cl3	-0.26168 (4)	0.33812 (4)	-0.06513 (5)	0.04406 (15)
C99	-0.14538 (14)	0.32753 (12)	0.00011 (16)	0.0311 (4)
H99	-0.1329	0.3035	0.0694	0.037*

Fractional atomic coordinates of	and isotropic or	equivalent isotropic	displacement	parameters ($(Å^2)$)
	1	1 1	1	1	. /	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.02504 (12)	0.02263 (12)	0.02072 (12)	0.000	0.00553 (9)	0.000
Br2	0.04348 (16)	0.02395 (13)	0.02526 (14)	0.000	0.01151 (11)	0.000
P1	0.01808 (19)	0.01810 (19)	0.0191 (2)	-0.00022 (15)	0.00459 (15)	-0.00208 (14)
C1	0.0265 (8)	0.0204 (8)	0.0244 (9)	-0.0010 (6)	0.0069 (7)	0.0010 (6)
C11	0.0285 (8)	0.0206 (8)	0.0227 (8)	-0.0028 (6)	0.0101 (7)	0.0015 (6)
C12	0.0354 (10)	0.0241 (8)	0.0280 (10)	-0.0065 (7)	0.0121 (8)	-0.0021 (7)
C13	0.0337 (10)	0.0371 (11)	0.0396 (12)	-0.0147 (9)	0.0099 (9)	0.0022 (9)
C14	0.0327 (11)	0.0446 (13)	0.0539 (15)	-0.0049 (9)	0.0220 (10)	0.0125 (11)
C15	0.0479 (13)	0.0375 (11)	0.0479 (14)	-0.0006 (10)	0.0329 (11)	0.0038 (10)
C16	0.0393 (11)	0.0315 (10)	0.0281 (10)	-0.0047 (8)	0.0174 (8)	-0.0017 (7)
C2	0.0225 (8)	0.0241 (8)	0.0193 (8)	0.0018 (6)	0.0069 (6)	-0.0002 (6)
C21	0.0218 (8)	0.0252 (8)	0.0176 (8)	0.0008 (6)	0.0067 (6)	0.0024 (6)
C22	0.0262 (9)	0.0288 (9)	0.0260 (9)	-0.0028 (7)	0.0069 (7)	0.0036 (7)
C23	0.0228 (9)	0.0431 (11)	0.0335 (11)	-0.0030 (8)	0.0107 (8)	0.0043 (9)
C24	0.0273 (9)	0.0427 (11)	0.0294 (10)	0.0093 (8)	0.0138 (8)	0.0051 (8)
C25	0.0331 (10)	0.0286 (9)	0.0261 (9)	0.0054 (8)	0.0113 (7)	0.0024 (7)
C26	0.0238 (8)	0.0261 (8)	0.0225 (8)	-0.0006 (7)	0.0067 (6)	0.0009 (6)
C3	0.0202 (7)	0.0193 (8)	0.0243 (8)	0.0026 (6)	0.0053 (6)	-0.0025 (6)
C4	0.0213 (8)	0.0214 (8)	0.0208 (8)	0.0012 (6)	0.0070 (6)	-0.0020 (6)
Cl1	0.0334 (2)	0.0369 (3)	0.0452 (3)	0.0021 (2)	0.0192 (2)	0.0015 (2)
Cl2	0.0842 (5)	0.0376 (3)	0.0367 (3)	-0.0212 (3)	0.0157 (3)	-0.0044 (2)
C13	0.0367 (3)	0.0499 (3)	0.0516 (3)	0.0161 (2)	0.0235 (2)	0.0209 (3)
C99	0.0363 (10)	0.0303 (10)	0.0264 (10)	-0.0011 (8)	0.0115 (8)	0.0040 (7)

Geometric parameters (Å, °)

P1—C3	1.8027 (18)	Cl2—C99	1.751 (2)
P1—C4 ⁱ	1.8050 (18)	Cl3—C99	1.770 (2)
P1—C1	1.8053 (18)	C1—H1A	0.9900
P1—C2	1.8170 (18)	C1—H1B	0.9900
C1—C11	1.507 (3)	C12—H12	0.9500
C11—C16	1.387 (3)	С13—Н13	0.9500
C11—C12	1.389 (3)	C14—H14	0.9500
C12—C13	1.393 (3)	C15—H15	0.9500
C13—C14	1.375 (4)	С16—Н16	0.9500
C14—C15	1.386 (4)	C2—H2A	0.9900
C15—C16	1.387 (3)	C2—H2B	0.9900
C2—C21	1.521 (2)	С22—Н22	0.9500
C21—C22	1.396 (3)	С23—Н23	0.9500
C21—C26	1.397 (3)	C24—H24	0.9500
C22—C23	1.389 (3)	C25—H25	0.9500
C23—C24	1.387 (3)	С26—Н26	0.9500
C24—C25	1.383 (3)	С3—НЗА	0.9900
C25—C26	1.393 (3)	С3—Н3В	0.9900

C3—C4	1.538 (2)	C4—H4A	0.9900
C4—P1 ⁱ	1.8049 (18)	C4—H4B	0.9900
Cl1—C99	1.761 (2)	С99—Н99	1.0000
C3—P1—C4 ⁱ	106.61 (8)	C14—C13—H13	120.0
C3—P1—C1	104.19 (8)	C12—C13—H13	120.0
C4 ⁱ —P1—C1	110.70 (9)	C13—C14—H14	119.9
C3—P1—C2	110.63 (9)	C15—C14—H14	119.9
$C4^{i}$ P1 C2	110.66 (8)	C14—C15—H15	120.1
C1—P1—C2	113 65 (8)	C16—C15—H15	120.1
C11C1P1	115.05 (0)	C11-C16-H16	119.7
C16-C11-C12	119.16 (19)	C15-C16-H16	119.7
C16C11C1	120 75 (17)	$C_21-C_2-H_2A$	108.5
C12C11C1	120.09 (17)	P1—C2—H2A	108.5
C11—C12—C13	120.3 (2)	C21—C2—H2B	108.5
C14—C13—C12	119.9 (2)	P1—C2—H2B	108.5
C13—C14—C15	120.3 (2)	H2A—C2—H2B	107.5
C14—C15—C16	119.8 (2)	C23—C22—H22	119.8
C11—C16—C15	120.5 (2)	C21—C22—H22	119.8
C21—C2—P1	115.04 (12)	C24—C23—H23	119.8
C22—C21—C26	118.72 (17)	С22—С23—Н23	119.8
C22—C21—C2	121.37 (17)	C25—C24—H24	120.2
C26—C21—C2	119.91 (16)	C23—C24—H24	120.2
C23—C22—C21	120.44 (19)	C24—C25—H25	119.9
C24—C23—C22	120.42 (19)	C26—C25—H25	119.9
C25—C24—C23	119.67 (18)	C25—C26—H26	119.8
C24—C25—C26	120.25 (19)	C21—C26—H26	119.8
C25—C26—C21	120.48 (17)	С4—С3—Н3А	108.2
C4—C3—P1	116.16 (12)	Р1—С3—Н3А	108.2
C3—C4—P1 ⁱ	113.36 (12)	С4—С3—Н3В	108.2
Cl2—C99—Cl1	109.85 (12)	Р1—С3—Н3В	108.2
Cl2—C99—Cl3	111.58 (12)	НЗА—СЗ—НЗВ	107.4
Cl1—C99—Cl3	108.59 (12)	C3—C4—H4A	108.9
С11—С1—Н1А	108.5	P1 ⁱ —C4—H4A	108.9
P1—C1—H1A	108.5	C3—C4—H4B	108.9
C11—C1—H1B	108.5	P1 ⁱ —C4—H4B	108.9
P1—C1—H1B	108.5	H4A—C4—H4B	107.7
H1A—C1—H1B	107.5	Cl2—C99—H99	108.9
C11—C12—H12	119.9	Cl1—C99—H99	108.9
C13—C12—H12	119.9	Cl3—C99—H99	108.9
C3—P1—C1—C11	-178.60 (14)	C1—P1—C2—C21	-86.12 (15)
C4 ⁱ —P1—C1—C11	-64.34 (16)	P1—C2—C21—C22	89.50 (19)
C2—P1—C1—C11	60.91 (16)	P1—C2—C21—C26	-90.81 (18)
P1-C1-C11-C16	69.5 (2)	C26—C21—C22—C23	1.2 (3)
P1-C1-C11-C12	-111.24 (18)	C2—C21—C22—C23	-179.06 (18)
C16—C11—C12—C13	-2.4 (3)	C21—C22—C23—C24	0.3 (3)
C1—C11—C12—C13	178.39 (18)	C22—C23—C24—C25	-1.0 (3)
C11—C12—C13—C14	-0.1 (3)	C23—C24—C25—C26	0.2 (3)

supplementary materials

C12-C13-C14-C15	2.1 (3)	C24—C25—C26—C21	1.3 (3)
C13-C14-C15-C16	-1.5 (4)	C22-C21-C26-C25	-2.0 (3)
C12—C11—C16—C15	3.0 (3)	C2-C21-C26-C25	178.29 (17)
C1-C11-C16-C15	-177.79 (19)	C4 ⁱ —P1—C3—C4	52.58 (17)
C14-C15-C16-C11	-1.1 (3)	C1—P1—C3—C4	169.70 (13)
C3—P1—C2—C21	157.08 (13)	C2—P1—C3—C4	-67.81 (15)
C4 ⁱ —P1—C2—C21	39.15 (16)	P1—C3—C4—P1 ⁱ	-56.00 (16)
Symmetry codes: (i) $-x$, $-y$, $-z$.			

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
C2—H2A···Cl3 ⁱⁱ	0.99	2.93	3.8486 (19)	155
C14—H14···Cl1 ⁱⁱⁱ	0.95	2.87	3.686 (2)	145
C13—H13···Br1 ^{iv}	0.95	2.99	3.773 (2)	141
C2—H2B···Br1 ^v	0.99	2.79	3.7553 (18)	166
C4—H4B···Br1 ^v	0.99	2.75	3.6757 (18)	157
C1—H1A…Br1 ^{vi}	0.99	2.86	3.7443 (19)	149

Symmetry codes: (ii) x+1/2, -y+1/2, z+1/2; (iii) -x+1/2, -y+1/2, -z; (iv) -x+1/2, -y+1/2, -z+1; (v) -x, -y, -z+1; (vi) x, y, z-1.

Fig. 2

